高二数学论文范例6篇

高二数学论文范例6篇
高二数学论文范文1
ABCD分值: 5分 查看题目解析 >88.某校高三(1)班32名学生参加跳远和掷实心球两项测试。跳远和掷实心球两项测试成绩合格的人数分别为26人和23人,这两项成绩均不合格的有3人,则这两项成绩均合格的人数是( )ABCD分值: 5分 查看题目解析 >填空题 本大题共6小题,每小题5分,共30分。把答案填写在题中横线上。99.已知等差数列前n项和为.若,,则=_______, .分值: 5分 查看题目解析 >1010.圆C:的圆心到直线的距离是 .分值: 5分 查看题目解析 >1111.执行如图所示的程序框图,则输出的结果为_______.
分值: 5分 查看题目解析 >1212.在中,已知,则 .分值: 5分 查看题目解析 >1313.设D为不等式组表示的平面区域,对于区域D内除原点外的任一点,则的值是_______,的取值范围是___.分值: 5分 查看题目解析 >1414. 甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖。有人走访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说: “丁获奖”;丁说:“丙说的不对”。若四位歌手中只有一个人说的是真话,则获奖的歌手是 .分值: 5分 查看题目解析 >简答题(综合题) 本大题共80分。简答应写出文字说明、证明过程或演算步骤。15已知函数.15.求的最小正周期;16.求在区间上的值和最小值.分值: 13分 查看题目解析 >16已知等比数列的各项均为正数,且,.17.求数列的通项公式;18.若数列满足,,且是等差数列,求数列的前项和.分值: 13分 查看题目解析 >17甲、乙两位学生参加数学文化知识竞赛培训。在培训期间,他们参加的5次测试成绩记录如下:甲: 82 82 79 95 87乙: 95 75 80 90 8519.用茎叶图表示这两组数据;20.从甲、乙两人的这5次成绩中各随机抽取一个,求甲的成绩比乙的成绩高的概率;21.现要从甲、乙两位同学中选派一人参加正式比赛,从统计学的角度考虑,你认为选派哪位同学参加合适?并说明理由.分值: 13分 查看题目解析 >18如图,四边形是边长为的正方形,平面平面,, .
22.求证:平面;23.求证:平面;24.求三棱锥的体积.分值: 14分 查看题目解析 >19在平面直角坐标系中,动点与两定点,连线的斜率乘积为,记点的轨迹为曲线.25.求曲线的方程;26.若曲线上的两点满足,,求证:的面积为定值.分值: 13分 查看题目解析 >20设函数.27.当时,求曲线在点处的切线方程;28.若函数有两个零点,试求的取值范围;29.设函数当时,证明.20 第(1)小题正确答案及相关解析正确答案
解析
解:当时,函数,因为,所以.又则所求的切线方程为.化简得:.考查方向
本题考查导数的计算,考查导数的几何意义,考查切线方程的求法,本题是一道简单题.解题思路
先对函数求导,然后求出且切线的斜率以及切点的坐标,再利用点斜式求出切线方程即可.易错点
本题易错在求导数时计算错误.20 第(2)小题正确答案及相关解析正确答案
解析
因为①当时,函数只有一个零点;②当,函数当时,;函数当时,.所以在上单调递减,在上单调递增.又,,因为,所以,所以,所以取,显然且所以,.由零点存在性定理及函数的单调性知,函数有两个零点.③当时,由,得,或.若,则.故当时,,所以函数在在单调递增,所以函数在至多有一个零点.又当时,,所以函数在上没有零点.所以函数不存在两个零点.若,则.当时,,所以函数在上单调递增,所以函数在至多有一个零点.当时,;当时,;所以函数在上单增,上单调递减,所以函数在上的值为,所以函数在上没有零点.所以不存在两个零点.综上,的取值范围是 ……………………………………………………9分考查方向
本题考查利用导数判断函数的单调性以及判断函数的零点的应用,考查函数与方程的应用,考查分类讨论的数学思想,本题是一道难题,是高考的热点.解题思路
先求出函数的导数,通过讨论的范围,判断函数的单调性结合函数的零点个数求出的范围即可易错点
本题易错在不能够准确对的取值进行分类讨论.20 第(3)小题正确答案及相关解析正确答案
证明略.解析
证明:当时,.设,其定义域为,则证明即可.因为,所以,.又因为,所以函数在上单调递增.所以有的实根,且.当时,;当时,.所以函数的最小值为.所以.所以. …………………………………………………………14分考查方向
本题考查构造法求函数的最值,考查利用导数的应用,本题是一道难题.解题思路
高二数学论文范文2
A0B5C45D90分值: 5分 查看题目解析 >77.若实数满足,则的值是 ( )A-3BCD分值: 5分 查看题目解析 >88.已知是定义在上的奇函数,当时,(为常数),则的值为 ( )A4B-4C6D-6分值: 5分 查看题目解析 >99.已知函数:①,②,则下列结论正确的是 ( )A两个函数的图像均关于点成中心对称B两函数的图像均关于直线对称C两个函数在区间 上都是单调递增函数D可以将函数②的图像向左平移个单位得到函数①的图像分值: 5分 查看题目解析 >1010. 已知是双曲线的上、下焦点,点关于渐近线的对称点恰好落在以 为圆心,为半径的圆上,则双曲线的离心率为( )A3BC2D分值: 5分 查看题目解析 >1111. 一个四面体的顶点都在球面上,它们的正视图、侧视图、俯视图都是下图,图中圆内有一个以圆心为中心边长为1的正方形,则这个四面体的外接球的表面积是( )
ABCD分值: 5分 查看题目解析 >1212.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:
①对于任意一个圆,其“优美函数“有无数个”;②函数可以是某个圆的“优美函数”;③正弦函数可以同时是无数个圆的“优美函数”;④函数是“优美函数”的充要条件为函数的图象是中心对称图形.其中正确的命题是:( )A①③B①③④C②③D①④分值: 5分 查看题目解析 >填空题 本大题共4小题,每小题5分,共20分。把答案填写在题中横线上。1313.已知向量,若,则 .分值: 5分 查看题目解析 >1414.在中,,则 .分值: 5分 查看题目解析 >1515. 在中,角的对边分别为,且,若的面积为,则的最小值为 .分值: 5分 查看题目解析 >1616.椭圆的左、右顶点分别为,点在上且直线斜率的取值范围是,那么直线斜率的取值范围是 .分值: 5分 查看题目解析 >简答题(综合题) 本大题共50分。简答应写出文字说明、证明过程或演算步骤。17已知,集合,把中的元素从小到大依次排成一列,得到数列 .17. 求数列的通项公式;18. ,设数列的前项和为,求证:.分值: 12分 查看题目解析 >18已知国家某级大型景区对拥挤等级与每日游客数量(单位:百人)的关系有如下规定:当时,拥挤等级为“优”;当时,拥挤等级为“良”;当时,拥挤等级为“拥挤”;当时,拥挤等级为“严重拥挤”.该景区对6月份的游客数量作出如图的统计数据:
19. 下面是根据统计数据得到的频率分布表,求出的值,并估计该景区6月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表);
20. 某人选择在6月1日至6月5日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为“优”的频率.分值: 16分 查看题目解析 >19如图,边长为2的正方形中,点是的中点,点是的中点.将分别沿折起,使两点重合于点,连结.
21. 求异面直线与所成角的大小;22. 求三棱锥的体积.分值: 12分 查看题目解析 >20如图,抛物线的焦点为,抛物线上一定点.
23. 求抛物线的方程及准线的方程;24. 过焦点的直线(不经过点)与抛物线交于两点,与准线交于点,记的斜率分别为,问是否存在常数,使得成立?若存在,求出的值;若不存在,说明理由.20 第(1)小题正确答案及相关解析正确答案
抛物线方程为,准线的方程为解析
把代入,得,所以抛物线方程为,…………………….2分准线的方程为.……………………..2分考查方向
抛物线的标准方程及准线。解题思路
1、把点坐标代入抛物线方程,求出,得出标准方程;易错点
化简时据算量较大,容易出错。20 第(2)小题正确答案及相关解析正确答案
存在,使得成立。解析
由条件可设直线的方程为.由抛物线准线,可知,又,所以,把直线的方程,代入抛物线方程,并整理,可得,设,则,…………………….3分又,故.因为三点共线,所以,即,……………………..5分所以,即存在常数,使得成立. ……………………..8分考查方向
高二数学论文范文3
曾经,大学是无数人改变命运的唯一通道。
如今,随着社会多元化的不断发展,像韩寒、李想这样的“叛逆者”却在一定程度上成为了80、90后的代言人。看问题的角度不同,产生的结果也不一样,但不可否认,他们都获得了大部分同龄人难以企及的成就。
当然,只举例没有意义,一个刘翔并能不代表亚洲人比非洲人跑得快。我们从他们身上看到的,不仅仅是这些新贵的头衔、财富和姿态,更多的是他们不同于常人的创新意识和价值观。听听没读过大学的成功人士讲述他们成功的故事,或许对那些落榜者会有所启发。
反方:高考零分,人生清零
每年高考,都有一些考生,以零分的方式,表达自己对现行教育制度的思考。
他们构成了高考的另一个榜单。这些不合作者,把自己整个青春期所受的教育归零,并以此挑战高考制度。听听零分考生讲述自己的故事,我们可以和他们一起思考:如何面对人生道路上重要的抉择。我们可能会发现,曾经用巨大代价所击退的挑战——高考,其实只是人生若干个挑战中最容易的一个。
也许,对制度的改变仅靠一时之激,是徒劳无益的。人需要有独立思考的能力,但不可冲动行事。
正方
韩寒:“竖子”也能成名
千年古城楼“云间第一楼”的青砖红瓦,掩映在一片翠绿之中,不时有身着蓝白相间校服的少年跨过门槛。14年前,作为体育特长生的韩寒,以低于录取分数线14分破格跨入了松江二中的门槛。不同的是,在连续读了两次高一之后,韩寒永远跨出了“云间第一楼”的门槛。
第一次高一的期末考试,韩寒七门功课全部不及格。后来,韩寒自我解嘲说这是“七门功课红灯,照亮我的前程”。
1999年,两次被留级的韩寒面临被学校劝说退学的危险,权衡再三后,自尊心极强的他决定主动申请退学,因为“这样起码有点面子”。而今天,韩寒的成就已远远超出了昔日的同窗。
“韩寒是我们同学中真正的佼佼者,他比我们都强。”10年后,韩寒的一位高中同学考上了重点大学,考上了上海市公务员,她走的是社会公认的主流的成才之路。她说,2009年,曾经因为“七盏红灯”而辍学的韩寒回到母校松江二中的时候,他受到了英雄般的接待,场面几近失控。
人生就像一条河流,随时都会处在分岔口面临各种选择。假如当年韩寒走上按部就班的道路,也就不会有“赛车手韩寒”,也不会有“文学韩寒”或者“公民韩寒”之类的称谓。尽管成功的经验并不可以复制,但它完全可以被借鉴。韩寒成功之路最大的启迪或许就是:在人生的每一个岔路口,他都做出了最能发挥自己优势的选择。
李想:身家过亿的高中生
现在,“李想”已经不再是一个陌生的字眼。1981年出生的他,1999年开始创业,在短短几年时间,他率领团队使自己的网站一跃成为全国众多IT专业网站里的第三名。而创造这一商业奇迹的,就是仅有高中学历的李想。作为泡泡网首席执行官,李想的身价将近两个亿。
对于李想的异军突起,有些人认为纯粹是靠运气,而事实上,任何成功都绝非偶然。
在高一那年,李想按自己的要求配置了一台价值八千多元的电脑。当时他每月的上网费将近七八百元,“上网的费用是我给计算机专业报刊写稿得的稿费。”回首那段岁月,李想显得波澜不惊。
1999年,念高三的李想办了一个名为“显卡之家”的网站,“那时候,我每天早晨四点钟起来。”李想说,“一直做到七点钟,然后才去学校。”
这些付出很快得到回报,由于网站发展迅速,不久,日访问量就达到一万多人次,加之用户的口口相传,很快,广告商开始给李想的网站投钱,每个月有六千多元。
高考前夕,李想决定放弃高考,全力以赴做网站。对儿子的这种选择,李想的父母显得相当开明,并没有过多干涉。
李想说:“我其实从来没有质疑过大学教育,我最质疑的其实是高中教育。因为很多时候,我们的思想、信仰、信念、上进心是在高中毁掉的,在一个人最关键的16到18岁之间,形成重要的人生价值观的阶段,被毁掉了。”“为什么每年偏偏要去挤那一个独木桥?而那个独木桥其实本身是一个过程,不是结果。”
反方
从拒绝到捍卫的徐孟南
徐孟南,22岁,安徽蒙城县人,2008年高考主动考零分,几门课共得143分。现在在江苏淮安经营一家猪毛厂。
4年前,徐孟南拒绝高考;4年后,徐孟南劝人高考。
徐孟南高一时成绩良好,高二时受韩寒《通稿2003》的影响,强烈反对应试教育,并自创了一个教育理念——“三人行”教育模式,核心理念是因材施教,根据每个人的爱好、特长进行教育,文化课得分只占高考的一部分。
为了宣传这一理念,他决定用零分换来话语权,让更多人关注他的“三人行”教育模式。
高考结束后,徐孟南到上海打工。那段时间晚上,他睡不着就琢磨:“考零分这事儿,到底对不对?”
一个月后,徐孟南悄悄从上海回到合肥,向媒体求助:他想上大学。但高考录取已过,没有大学愿意接受他。
接下来的几年,他的生活被打工的“劳累、辛苦”充斥着,而他的同学,无论名校还是专科,几乎都在读书。偶尔的相聚,同学们聊着愉快的大学生活,和对未来的憧憬,这令徐孟南羡慕不已。每次听到同学们的近况,他都不由感慨:“一步岔开,路就不同了。”他有时忍不住抱怨,当初为什么没人拉他一把。
这个念头促成了徐孟南的“悔悟劝学”行动。2011年5月,他找人做了一个木箱随身背着,里面放了4000多份宣传单,呼吁大家要好好参加高考,不要考零分。
徐孟南现在仍然想去读大学。“要出世先得入世。”他最大的感悟是:进入体制去了解它存在的问题才能改革它。
寻找“伯乐”的吉剑
吉剑,25岁,云南昭通人,2008年高考主动考零分,几门课共得168分。现在浙江永康一家工厂打工。
吉剑在高考中故意考零分来“改变中国高考制度”。4年后,吉剑并没改变什么,他继续过着清贫的生活,继续写文讨伐应试教育,继续寻找他的“伯乐”。
“你后悔吗?”这是每个高考考零分的考生绕不过去的问题。吉剑在他《吉剑的反思》一文中更明确地回答:“虽然大多数高考零分的人后悔了,可是我吉剑没有后悔。”
吉剑喜欢数学,高中就读云南镇雄某中学时,别的同学忙着做题时,他却在思考“圆周率为什么无限循环”等问题。高考时,吉剑并没有在试卷上答题,而是写下了一些数学论文,及对高考的看法。吉剑希望,高考阅卷老师看到他在数学方面的才华后,“汇报给教育部门”,或是被理想中的大学直接特招。但到了9月新生入学时,仍没有学校或老师传递给他相关的信息。吉剑只好到各地打工,这期间他仍学习数学。
下一篇:没有了



支部换届报告15篇
家庭贫困申请书24篇